Matematika ilmu yang tidak perlu kita buat
sulit, karena matematika memang tidak sulit. Sebelumnya telah banyak materi
matematika yang telah saya berikan artikelnya seperti invers fungsi, rumus pythagoras, statistika data tunggal dan statistika data kelompok, fungsi eksponen dan logaritma, dan masih
banyak lagi yang lainnya. Kali ini topik yang akan kita bahas yaitu tentang
program linear.
Program
linear yaitu suatu metode untuk mencari nilai maksimum atau nilai minimum dari
bentuk linear pada daerah yang dibatasi grafik -grafik fungsi linear.
Himpunan penyelesaian dari sistem pertidaksamaan
linear dua peubah merupakan suatu himpunan titik-titik (pasangan berurut (x,y))
dalam bidang cartesius yang memenuhi semua pertidaksamaan linear dalam sistem
tersebut. Sehingga daerah himpunan penyelesaiannya merupakan irisan
himpunan-himpunan penyelesaian dari pertidaksamaan dalam sistem pertidaksamaan
linear dua peubah itu. Untuk lebih mudah dalam memahami daerah
penyelesaian dari sistem pertidak-samaan linear dua peubah, perhatikan contoh berikut.
Contoh:
Tentukan daerah penyelesaian dari sistem pertidaksamaan linear berikut!
3x + 5y 15
x 0
y 0
Tentukan daerah penyelesaian dari sistem pertidaksamaan linear berikut!
3x + 5y 15
x 0
y 0
Penyelesaian:
Gambar garis 3x + 5y =15, x = 0, dan y =0
Untuk 3x + 5y 15
Pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
3 × 0 + 5× 0 15
0 15 (benar), artinya dipenuhi
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (0,0)
Untuk x 0, pilih titik (1,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
1 0 (benar), artinya dipenuhi.
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (1,1)
Untuk y 0, pilih titik (1,1) kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 0 (benar), artinya dipenuhi.
Sehingga himpunan penyelesaiannya adalah daerah yang memuat titik (1,1).
Gambar garis 3x + 5y =15, x = 0, dan y =0
Untuk 3x + 5y 15
Pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
3 × 0 + 5× 0 15
0 15 (benar), artinya dipenuhi
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (0,0)
Untuk x 0, pilih titik (1,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
1 0 (benar), artinya dipenuhi.
Sehingga daerah penyelesaiannya adalah daerah yang memuat titik (1,1)
Untuk y 0, pilih titik (1,1) kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 0 (benar), artinya dipenuhi.
Sehingga himpunan penyelesaiannya adalah daerah yang memuat titik (1,1).
Selanjutnya
arsir daerah yang memenuhi persamaan, seperti gambar dibawah ini.
Daerah penyelesaian sistem pertidaksamaan
merupakan irisan dari ketiga himpunan penyelesaian pertidaksamaan di atas,
yaitu seperti terlihat pada gambar berikut ini (daerah yang diarsir).
Pertidaksamaan Linear juga dapat digunakan untuk
memecahkan masalah dalam kehidupan sehari-hari. Hal ini dapat dilakukan dengan
memodelkan masalah menjadi model matematika. Jadi, Model matematika
merupakan suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam
bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi.
Perhatikan contoh berikut :
Pak Adi merupakan seorang pedagang roti. Beliau
menjual roti menggunakan gerobak yang dapat memuat 600 bungkus roti. Roti yang
dijualnya yaitu roti manis dan roti tawar dengan harga masing-masing Rp
5.500,00 untuk roti manis dan Rp 4.500,00 untuk roti tawar per bungkusnya. Dari
penjualan roti tersebut, beliau memperoleh keuntungan Rp 500,00 dari sebungkus
roti manis dan Rp 600,00 dari sebungkus roti tawar. Apabila modal yang dimiliki
oleh Pak Budi adalah Rp 600.000, buatlah model matematika agar beliau dapat
memperoleh keuntungan sebesar-besarnya!
Penyelesaian :
Permasalahan Pak Adi diatas dapat dimodelkan
dalam bentuk matematika dengan menggunakan sistem pertidaksamaan linear dua
variabel. Dengan memisalkan banyaknya roti manis sebgai x dan roti tawar
sebagai y sehingga diperoleh tabel sebagai berikut.
Berdasarkan tabel diatas jika kita tuliskan dalam
bentuk pertidaksamaan linear menjadi
x + y ≤ 600,
5.500x + 4.500y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
5.500x + 4.500y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
Dua pertidaksamaan terakhir (baris ketiga) menunjukkan
syarat dari nilai x dan y. Dikarena x dan y
merupakan pernyataan yang menyatakan banyaknya roti, maka tidak mungkin nilai x
dan y bernilai negatif.
Perhatikan kolom keempat dari tabel di atas yang
menyatakan fungsi yang akan ditentukan nilai maksimumnya (nilai optimum).
Fungsi tersebut dapat dituliskan dalam persamaan matematika sebagai berikut.
f(x,y) = 500x + 600y
untuk
menyelesaikan sistem pertidaksamaan diatas kita dapat mengikuti langkah berikut
:
1. Ubah
masalah tersebut ke dalam model matematika yaitu dengan membuat tabel, fungsi
pembatas dan fungsi tujuan. Tabel di sini untuk mempermudah membaca data.
Fungsi pembatas/kendala yaitu beberapa pertidaksamaan linier yang berhubungan
dengan permasalahan tersebut. Fungsi tujuan/objektif yaitu suatu fungsi yang
berhubungan dengan tujuan yang akan dicapai. Biasanya fungsi tujuan dinyatakan
dengan f(x,y) = ax + by atau z = ax + by
2. Lukislah daerah penyelesaian dari fungsi pembatasnya
3. Tentukan koordinat-koordinat titik ujung daerah penyelesaian. Jika belum ada gunakan bantuan eliminasi dari perpotongan 2 garis
4. Ujilah masing-masing titik ujung daerah penyelesaian
5. Tentukan nilai terbesar/terkecilnya sesuai dengan tujuan yang akan dicapai
2. Lukislah daerah penyelesaian dari fungsi pembatasnya
3. Tentukan koordinat-koordinat titik ujung daerah penyelesaian. Jika belum ada gunakan bantuan eliminasi dari perpotongan 2 garis
4. Ujilah masing-masing titik ujung daerah penyelesaian
5. Tentukan nilai terbesar/terkecilnya sesuai dengan tujuan yang akan dicapai
dimana langkah
no 1 telah kita dapatkan karena disini rumus matematika menunjukan bagaimana
cara membuat model matematika. Selanjutnya ikuti langkah berikutnya agar kita
memperoleh daerah penyelesaiannya.
Sedikit
materi Program linear ini diharapkan dapat
memberikan manfaat untuk membantu sobat semua dalam lebih memahami matematika.
Selamat belajar dan semoga sukses.
Tidak ada komentar:
Posting Komentar